Patulosides A and B, Novel Xanthone Glycosides from Cell Suspension Cultures of *Hypericum patulum*

Kyoko Ishiguro,* Rie Yamamoto, and Hisae Oku

School of Pharmaceutical Sciences, Mukogawa Women's University, Koshien Kyuban-cho, Nishinomiya, 663-8179, Japan

Received November 18, 1998

Two new xanthone glycosides, patuloside A $(3-\beta-D-glucopyranosyloxy-1,5,6-trihydroxy-9H-xanthene-9$ $one, 1) and patuloside B [3-(2-<math>O-\alpha-L$ -rhamnopyranosyl- $\beta-D$ -glucopyranosyl)oxy-1,5,6-trihydroxy-9H-xanthene-9-one, 2], have been isolated from cell suspension cultures of *Hypericum patulum*. Their structures were elucidated by spectral techniques.

Plants of the genus Hypericum have been used as traditional medicinal plants in various parts of the world.¹ Recently, antifungal,² antibiotic,³ antiviral,⁴ and anticancer⁵ compounds were isolated from these species. *Hyperi*cum patulum Thunb. (Guttiferae) has been used in traditional Chinese herbal medicine for the treatment of hepatitis, bacterial diseases, and nasal hemorrhage.⁶ Previously, as part of a continuing study of *Hypericum*,³ we reported the isolation and structure determination of 14 prenylated xanthones and epicatechins from chloroform or methanol extracts of cell suspension cultures induced from flowers of *H. patulum*⁷⁻¹¹ and discussed the possible biosynthetic relationships among these xanthones.^{9,12} Recently, Takamiya et al. isolated anthocyanins and procyanidins from tissue, cell suspension, and adventitious root cultures of H. patulum.13

Further investigation of the *n*-BuOH extract from cell suspension cultures of *H. patulum* has led to the isolation of two new xanthone glycosides named patulosides A (1) and B (2). We describe herein the isolation, characterization, and structure elucidation of these compounds. This is the first report on the isolation of 1,3,5,6-tetrahydrox-yxanthone glycosides from cell suspension cultures of *H. patulum*.

Suspension cells of *H. patulum* maintained in Linsmaier–Skoog (LS) medium¹⁴ containing 2,4-D and kinetin at 27 °C in the dark were harvested at 2–3-week intervals. The harvested cells were dried and extracted successively with CHCl₃ and MeOH. The MeOH extract was suspended in water and extracted with EtOAc and *n*-BuOH, in turn. The *n*-BuOH extract was subjected to polyamide and Si gel column chromatography followed by further purification using gel filtration over Sephadex LH-20, and recrystallization from MeOH led to the isolation of two new xanthone glycosides, patulosides A (**1**) and B (**2**).

Patuloside A (1) crystallized as pale yellow needles, mp 282 °C. FABMS showed a molecular ion at m/z 423 [M + H]⁺, and a HRMS measurement established a molecular formula of C₁₉H₁₈O₁₁. The IR spectrum suggested the presence of phenolic hydroxyl groups and a conjugated carbonyl group from bands at 3320 cm⁻¹ and 1643 cm⁻¹. The UV spectrum exhibited characteristic absorption bands¹⁵ of a 1,3,5,6-tetraoxygenated xanthone at λ_{max} 256, 281, and 325 nm. Acid hydrolysis of 1 yielded an aglycon and a sugar. The aglycon was identified as 1,3,5,6-tetrahydroxyxanthone (3),¹⁶ which has been isolated previously from

the same culture, by direct comparison with an authentic sample.¹¹ The sugar unit was determined to be glucose by TLC.

The ¹H NMR spectrum of **1** showed the presence of two characteristic pairs of meta-coupled aromatic protons (δ 6.40, 6.63) and *ortho*-coupled aromatic protons (δ 6.87, 7.50), a hydrogen-bonded hydroxyl proton (δ 13.25), an anomeric proton (δ 5.07), and other sugar protons in the range of δ 3.16–3.72 (Table 1). The lowfield shift of H-8 (δ 7.50), ortho-coupled with H-7, indicated that H-8 is located in an area deshielded by a carbonyl group. Thus, the two hydroxyl groups should be located at C-5 and C-6. The ¹³C NMR spectrum of 1 showed signals for 19 carbons in the molecule, with there being six saccharide carbons, including an anomeric carbon at δ 99.8 and 13 carbons corresponding to a tetrahydroxyxanthone moiety, with a carbonyl carbon at δ 179.8 (C-9). The spectroscopic data of 1 indicated it to be a monoglucoside of 1,3,5,6-tetrahydroxyxanthone (3). All signal assignments in the ¹H and ¹³C NMR spectra were confirmed with ¹H-¹H COSY and ¹H-¹³C COSY 2D NMR techniques (Table 1).

Downfield shifts¹⁷ of 0.24 and 0.23 ppm for H-2 (δ 6.40) and H-4 (δ 6.63), respectively, in the ¹H NMR spectrum and downfield shifts of 0.50 and 0.7 ppm for C-2 (δ 98.3) and C-4 (δ 94.5), respectively, in the ¹³C NMR spectrum of **1**, compared with analogous data for **3**,¹⁶ suggested the location of a glucose moiety at the 3-hydroxyl group. The configuration of the anomeric proton was determined as α from the ¹H NMR (J = 7.3 Hz) and ¹³C NMR (Glc-1 at δ 99.8) data.¹⁸ Thus, the structure of patuloside A was established as 3-*O*- β -D-glucopyranosyl-1,5,6-trihydroxyxanthone (**1**).

Patuloside B (2) crystallized as pale yellow needles, mp 233 °C, and the molecular formula of $C_{25}H_{28}O_{15}$ was established by HRFABMS measurements. Positive-ion FABMS showed a [M + H]⁺ ion at m/z 569. The IR spectrum suggested the presence of phenolic hydroxyl groups at 3200 cm⁻¹ and a conjugated carbonyl group at 1650 cm⁻¹, while the UV spectrum exhibited maxima at 206, 251, 281, and 325 nm.

^{*} To whom correspondence should be addressed. Tel.: 0798-47-1212. Fax: 0798-41-2792. E-mail: ishiguro@mwu.mukogawa-u.ac.jp.

Table 1.	¹ H,	¹³ C NMR and	l HMBC Data	for Patulosides	$A (1) and B (2)^{a}$
----------	-----------------	-------------------------	-------------	-----------------	-----------------------

	patuloside (1)		patuloside (2)		
position	¹³ C	¹ H (<i>J</i>)	¹³ C	¹ H (<i>J</i>)	HMBC
1	162.4		162.5		
2	98.3	6.40 d (2.1)	98.1	6.38 d (2.5)	1, 4, 9a
3	163.6		163.3		
4	94.5	6.63 d (2.1)	94.3	6.62 d (2.5)	2, 3, 4a, 9a
4a	156.9		157.0		
4b	145.7		146.2		
5	132.6		132.6		
6	153.6		152.6		
7	113.5	6.87 d (8.5)	113.3	6.95 d (8.8)	5, 8a
8	116.1	7.50 d (8.5)	116.0	7.52 d (8.8)	4b, 6, 9
8a	112.2		112.9		
9	179.8		179.9		
9a	102.9		103.0		
1-0H		13.25 s		13.15 s	
glucose moiety					
1'	99.8	5.07 d (7.3)	97.6	5.26 d (7.3)	
2′	73.0	3.16-3.51 m	76.2	3.53 m	Glc-4
3′	76.2	3.16-3.51 m	76.9	3.49 m	Glc-2
4'	69.5	3.16-3.51 m	69.6	3.22 m	Glc-3
5'	77.0	3.16-3.51 m	77.1	3.49 m	
6'	60.6	3.72 dd (1.8, 11.6)	60.5	3.50 dd (5.4, 8.8)	Glc-4
				3.73 d (5.4)	
rhamnose moiety					
1″			100.4	5.15 d (1.5)	Glc-2, Rha-2, -3, -5
2″			70.4	3.71 dd (1.5, 3.4)	Rha-3, -4
3″			70.5	3.35 dd (3.4, 9.8)	Rha-4
4‴			71.8	3.22 m	Rha-2, -3
5″			68.3	3.77 m	
6″			18.0	1.21 d (5.9)	Rha-4, -5

^a Data were recorded in DMSO-d₆ at 500 Hz (¹H) or 125 MHz (¹³C). Multiplicities and coupling constants are given in Hz.

The ¹H and ¹³C NMR data of 2 (Table 1) were similar to those of patuloside A (1), but 2 had an additional rhamnose moiety. The ¹H NMR spectrum of **2** showed the presence of signals corresponding to a 1,3,5,6-tetrahydroxyxanthone skeleton, and the sugar moieties included two anomeric protons at δ 5.15 (J = 1.47 Hz, Rha) and δ 5.26 (J = 7.33Hz, Glc). The ¹³C NMR spectrum of **2** showed 25 signals, of which 12 were assigned to the saccharide protons and 13 to a tetrahydroxyxanthone moiety. The sugar proton resonances were assigned based on the ¹H-¹H COSY spectrum, and the ¹³C NMR data were assigned from the ¹³C⁻¹H COSY spectrum. The NMR data of 2 (Table 1) indicated that it was a monorhamnoside of patuloside A (1). Partial acid hydrolysis of 2 with 10% formic acid yielded L-rhamnose and 1, which was identified by comparison with an authentic sample.

The position of the rhamnose linkage in **2** was established at the 2'-hydroxyl group of the glucose moiety by HMBC techniques (Table 1), which showed cross peaks between the signals at δ 5.15 (Rha-1) and δ 76.2 (Glc-2). The configuration of anomeric protons of the glucose and rhamnose were determined as α and β based on *J* values in the ¹H NMR spectrum and chemical shifts in the ¹³C NMR spectrum.¹⁸ Thus, the structure of patuloside B was established as 3-*O*-(2-*O*- α -L-rhamnopyranosyl)- β -D-glucopyranosyl-1,5,6-trihydroxyxanthone (**2**).

Prenylated or glycosylated 1,3,6,7-tetrahydroxyxanthone derivatives and prenylated 1,3,5,6-tetrahydroxyxanthone derivatives have been isolated to date from cell suspension cultures of *H. patulum.* However, glycosylated 1,3,5,6-tetrahydroxyxanthone derivatives (**1** and **2**) are reported for the first time in this study. The co-occurrence of 1,3,5,6-and 1,3,6,7-tetraoxygenated xanthones in species of the Guttiferae¹⁹ and Moraceae²⁰ has been reported, and their coexistence in cell suspension cultures of *H. patulum* was shown for the first time by Ishiguro et al.⁹

In a previous study, we reported antimicrobial activity against *Staphylococcus aureus* and *Escherichia coli* of xanthone derivatives isolated from *H. patulum* cultures.¹² We considered it worth investigating the same biological effect for patulosides A (1) and B (2). However, these compounds did not suppress the growth of *S. aureus* and *E. coli* at 1 mg/mL using an agar-well method.¹⁸ Therefore, this result supports our previous conclusion that the antibacterial activity of xanthone derivatives from *H. patulum* is dependent on the presence of either a prenyl group or a cyclopentane ring in the molecule.

Experimental Section

General Experimental Procedures. Melting points were determined on a Yanagimoto micro melting-point apparatus. IR spectra were recorded on a Shimazu 435 spectrometer and the UV absorption spectra with Hitachi 323 spectrometer. ¹H and ¹³C NMR spectra were recorded with JEOL JNM-GSX 500 spectrometers (TMS as internal reference). FABMS were performed on a JEOL JMS-DX 303 double-focusing spectrometer, with an ion-accelerating voltage of 3 kV. A fast-atom xenon beam was generated from Xe⁺ ions that were accelerated to 6 kV. The mass maker was calibrated with poly(ethylene glycol)-400 for patuloside A (1) and poly(ethylene glycol)-600 for patuloside B (2) (resolution = 5000).

Plant Material. Seedlings of *H. patulum* were grown at Mukogawa Women's University and verified by Dr. G. Yoneda (Faculty of Pharmaceutical Sciences, Osaka University, Osaka, Japan). A voucher sample (MWU P3144014) is kept at Mukogawa Women's University.

Suspension Culture. Callus tissues were induced from the flower of *H. patulum* on LS solid medium containing 3% sucrose; 10^{-5} M 2,4-D; 10^{-7} M kinetin; and 1.4% agar (pH 5.5) in the dark at 27 °C. Callus tissue cultures were transferred into liquid LS medium¹⁴ containing 3% glucose; 10^{-5} M 2,4-D; and 10^{-7} M kinetin (pH 5.5) to initiate suspension cultures and were subcultured every 2–3 weeks for one year. Suspen-

sion cultures were maintained at 27 °C in the dark on a rotary shaker (100 rpm).

Extraction of Cultured Cells. Cells were collected by filtering the suspension cultures at 2–3-week intervals. Whole cells (1.2 kg), after being washed with H_2O and dried under a flow of hot air at 60 °C, were extracted successively with CHCl₃ and MeOH.

Isolation of 1 and 2. The MeOH extract (283 g) was dissolved in a minimal amount of H₂O and partitioned with EtOAc. The aqueous phase was then extracted with *n*-BuOH. The *n*-BuOH extract (30 g) was subjected to polyamide column chromatography using H₂O and MeOH as solvents. The MeOH-soluble eluent was subjected to Si gel column chromatography using CHCl₃–MeOH as eluent. A fraction eluted by CHCl₃-MeOH (5:1) was purified by gel filtration over Sephadex LH-20 with MeOH and was recrystallized from MeOH to obtain patuloside A (1, 3.8 mg). The CHCl₃-MeOH (3:1) fraction was recrystallized from MeOH to obtain patuloside B (2, 23 mg).

Patuloside A (1): pale yellow needles (MeOH), mp 282 °C; UV (MeOH) λ_{max} (log ϵ) 206 (4.20), 251 (4.52), 281 (3.89), 325 (4.14) nm; IR (KBr) $\tilde{\nu}_{max}$ 3320 (br, OH), 2870, 1643, 1600, 1495, 1460 cm⁻¹; ¹H NMR (DMSO- d_6 , 500 MHz) and ¹³C NMR (DMSO- d_6 , 125 MHz), see Table 1; positive FABMS m/z 423 $[M + 1]^+$ (99); HRFABMS m/z 423.0934 (calcd for C₁₉H₁₈O₁₁, 423.0927).

Patuloside B (2): pale yellow needles (MeOH), mp 233 °C; UV (MeOH) λ_{max} (log ϵ) 205 (4.25), 251 (4.02), 281 (4.63), 325 (4.35) nm; IR (KBr) ν_{max} 3400 (br, OH), 3200, 2850, 1650, 1590, 1610, 1490, 1460, 1400 cm⁻¹; ¹H NMR (DMSO-*d*₆, 500 MHz,) and ¹³C NMR (DMSO-d₆, 125 MHz), see Table 1; positive FABMS *m*/*z* 569 [M + 1]⁺ (99); HRFABMS *m*/*z* 569.1514, (calcd for C₂₅H₂₈O₁₅, 569.1507).

Antimicrobial Assay. The in vitro antimicrobial activity was determined by the agar-well method²¹ using both *Staphy*lococcus aureus 209P JC-1 and Escherichia coli NIHJ JC-2. Plates were prepared with 4-mm deep sensitivity test agar medium (Eiken Chemical Co., Ltd., Tokyo, Japan), which had previously been inoculated with 1% (v/v) of a test organism grown overnight at 37 °C in heart infusion broth (Nissui Pharmaceutical Co., Ltd., Tokyo, Japan). Holes of 8-mm diameter were bored in the medium with a sterile borer and filled with a $40-\mu$ L solution (1 mg/mL) of each test sample. The plates were sealed and then incubated for 18 h at 37 °C. The activity was expressed as the diameter of the inhibition.

References and Notes

- Yazaki, K.; Okada, T. Biotechnol. Agric. Forest.: Medicinal and Aromatic Plants VI; Bajaj, Y. P. S., Ed.; Springer-Verlag: Berlin, 1994; Vol. 26, pp 167-178.
- Rocha, L.; Marston, A.; Kaplan, M. A.; Stoeckli-Evans H.; Thull, U.; Testa, B.; Hostettmann, K. *Phytochemistry* **1994**, *36*, 1381–1385.
- (3) Ishiguro, K.; Nagata, S.; Fukumoto, H.; Yamaki, M.; Isoi, K. Phytochemistry 1994, 35, 469-471. Diwu, Z. Photochem. Photobiol. 1995, 61, 529-539.
- Renard, J. N.; Koike, N.; Kim, T.; Shimo, K.; Suzuta, T. Anticancer
- Res. 1985, 5, 594-597. (6) Chang Su New Medical College, Dictionary of Chinese Crude Drugs,
- Shanghai Scientific Technological Publishers: Shanghai, 1994. (7) Ishiguro, K.; Fukumoto, H.; Nakajima, M.; Isoi, K. Phytochemistry
- 1993. 33. 839-840. (8)Ishiguro, K.; Nakajima, M.; Fukumoto, H.; Isoi, K. Phytochemistry 1995. 38. 867-869
- Ishiguro, K.; Nakajima, M.; Fukumoto, H.; Isoi, K. Phytochemistry (9)**1995**, *39*, 903-905.
- (10) Isbiguro, K.; Fukumoto, H.; Suitani, A.; Nakajima, M.; Isoi, K. *Phytochemistry* 1996, 42, 435–437.
- Ishiguro, K.; Nagareya, N.; Suitani, A.; Fukumoto H. Phytochemistry (11)1997, 44, 1065-1066.
- (12) Ishiguro, K.; Oku, H.; Isoi, K. Biotechnol. Agricul. Forest.: Medicinal and Aromatic Plants XI; Bajaj, Y. P. S., Ed.; Springer-Verlag: Berlin, 1999; Vol. 43; pp 199-212.
- Takamiya, M.; Tanaka, N.; Touno, K.; Terahara, N.; Shimomura, K.; (13)Ishimaru, K. *Jpn. J. Food Chem.* **1998**, *51*, 3–8. (14) Linsmaier, E. M.; Skoog, F. *Physiol. Plant.* **1965**, *18*, 100–127. (15) Chaudhuri, R. K.; Ghosal, S. *Phytochemistry* **1971**, *10*, 2425–2432.

- (a) Abou-Shoer, M. Suwanborirux, K.; Habib, A.-A. M.; Chang, C.-J.; Cassady, J. M. *Phytochemistry* **1993**, *34*, 1413–1420. (b) Frahm, (16)A. W.; Chaudhuri, R. K. Tetrahedron 1979, 35, 2035-2038
- (17) Markham, K. R.; Ternai, B.; Stanley, R.; Geiger, H.; Mabry, T. J. Tetrahedron 1978, 34, 1389-1397.
- (18) Breitmaier, E.; Voelter, W. Carbon-13 NMR Spectroscopy, VCH: New York, 1987; pp 380-394.

- (19) Sultanbawa, M. U. S. *Tetrahedron* 1980, *36*, 1465–1506.
 (20) Nomura, T.; Hano, Y. *Nat. Prod. Rep.* 1994, *11*, 205–218.
 (21) Hartly, E.; Adamson, D. M. C. *British Pharmacopoea*, Appendix XIV; Her Majesty's Stationery Office: London, 1973; p A102.

NP980519X